Downregulation of calcitonin receptor mRNA expression by calcitonin during human osteoclast-like cell differentiation.

نویسندگان

  • S Takahashi
  • S Goldring
  • M Katz
  • S Hilsenbeck
  • R Williams
  • G D Roodman
چکیده

Calcitonin inhibits both osteoclast formation and bone resorption, and is a primary treatment for patients with hypercalcemia and increased bone turnover. However, the clinical utility of calcitonin is limited because patients become refractory to calcitonin after several days (the calcitonin "escape phenomenon"). The molecular basis for calcitonin "escape" is unclear. To determine the regulatory mechanisms controlling calcitonin receptor (CTR) expression in osteoclasts and their precursors, we treated immature mononuclear precursors for human osteoclast-like multinucleated cells (MNC) formed in vitro with 1,25-(OH)2D3, to induce their differentiation to committed mononuclear precursors, and mature multinucleated osteoclasts, and used reverse transcriptase (RT)-PCR to assess expression of CTR mRNA in both committed mononuclear precursors and MNC. The PCR fragment produced was cloned and sequenced to confirm that it was derived from CTR mRNA. CTR mRNA expression was detected in mononuclear MNC precursors after 7 d of 1,25-(OH)2D3 treatment. It was also present in osteoclast-like MNC and highly purified giant cells from osteoclastomas, but not in monocytes or macrophage polykaryons formed in vitro. Calcitonin markedly decreased CTR but not actin mRNA expression in giant cells and MNC after 12 h, and removal of calcitonin restored CTR mRNA expression. Similarly, calcitonin decreased calcitonin-induced adenylate cyclase activity. These data suggest: (a) downregulation of CTR gene expression by calcitonin may in part explain the calcitonin "escape phenomenon"; and (b) expression of CTR mRNA occurs in mononuclear osteoclast precursors within 7 d after exposure to 1,25-(OH)2D3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stimulation of resorption in cultured mouse calvarial bones by thiazolidinediones.

Dosage-dependent release of 45Ca was observed from prelabeled mouse calvarial bones after treatment with two thiazolidinediones, troglitazone and ciglitazone. Release of 45Ca by ciglitazone was decreased by the osteoclast inhibitors acetazolamide, calcitonin, 3-amino-1-hydroxypropylidene-1,1-bisphosphonate, and IL-4, but not affected by the peroxisome proliferator-activated receptor gamma antag...

متن کامل

Umeå University Odontological Dissertations

The Calcitonin Gene Family of Peptides: Receptor Expression and Effects on Bone Cells Susanne Granholm, Department of Oral Cell Biology, Umeå University, SE-901 87 Umeå, Sweden The calcitonin gene family of peptides consists of calcitonin (CT), two calcitonin gene related peptides (α-CGRP, β-CGRP), adrenomedullin (ADM), amylin (AMY), three calcitonin receptor activating peptides (CRSP1-3) and i...

متن کامل

miRNA-340 inhibits osteoclast differentiation via repression of MITF

Many miRNAs play critical roles in modulating various biological processes of osteoclast differentiation and function. Microphthalmia-associated transcription factor (MITF), a target of miR-340, served as pivotal transcription factor involved in osteoclast differentiation. However, the role of miR-340 and MITF during osteoclast differentiation has not yet been clearly established. Tartrate-resi...

متن کامل

Effect of The Receptor Activator of Nuclear Factor кB and RANK Ligand on In Vitro Differentiation of Cord Blood CD133+ Hematopoietic Stem Cells to Osteoclasts

OBJECTIVE Receptor activator of nuclear factor-kappa B ligand (RANKL) appears to be an osteoclast-activating factor, bearing an important role in the pathogenesis of multiple myeloma. Some studies demonstrated that U-266 myeloma cell line and primary myeloma cells expressed RANK and RANKL. It had been reported that the expression of myeloid and monocytoid markers was increased by co-culturing m...

متن کامل

Inhibitors of histone deacetylases in class I and class II suppress human osteoclasts in vitro.

Histone deacetylase inhibitors (HDACi) suppress cancer cell growth, inflammation, and bone resorption. The aim of this study was to determine the effect of inhibitors of different HDAC classes on human osteoclast activity in vitro. Human osteoclasts generated from blood mononuclear cells stimulated with receptor activator of nuclear factor kappa B (RANK) ligand were treated with a novel compoun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 95 1  شماره 

صفحات  -

تاریخ انتشار 1995